Properties of magnetic elements in the quiet Sun using the marker-controlled watershed method

نویسندگان

  • Z. X. Xie
  • D. R. Yu
  • J. Zhang
  • S. H. Yang
  • Q. H. Hu
چکیده

Context. The quiet Sun is an important part of understanding the global magnetic properties of the Sun. A recently launched observation system, named HINODE, provides a lot of high-resolution images for studying the quiet Sun. Obviously, it is time-consuming to analyze these images by hand. It is desirable to develop a technique for recognizing magnetic elements, thus automatically computing magnetic properties and the relationship between magnetic elements and granulation. Aims. We design an automatic method of recognizing magnetic elements based on the features of HINODE magnetograms and of measuring their properties. Then we study the relationship between magnetic elements and granulation. Methods. We used the magnetogram, continuum image, and Dopplergram on April 16, 2007, which were taken with the Solar Optical Telescope instrument aboard HINODE. The field of view is 147. ′′60× 162. ′′30 in a quiet solar region, locating at disk center. We introduced the mark-controlled watershed method to detect magnetic elements automatically, because it is a popular image-segmentation method for dealing with overlapping objects. We took the centers that are the local maximum in all directions as the marks for restraining over-segmentation. We computed the properties of the detected magnetic elements and the relation among magnetic field strength, relative continuum intensity, and Doppler velocity at the same locations of magnetic elements. Results. We obtain the following results: (1) 34% of our observation region are covered by magnetic fields; (2) the magnetic flux distribution of all elements reaches a peak at 1.07 × 1016 Mx for the whole region; (3) the relative continuum intensity distribution at the locations of magnetic elements reaches a peak at 0.97, which shows that the majority of magnetic elements located at the areas where the relative continuum intensity is less than its average. The relative continuum intensities in the areas with strong flux density are the median, meaning that the strong magnetic elements are usually located at the boundary of granulation; (4) the absolute Doppler velocity distribution at the locations of magnetic elements reaches a peak at 1.00 km s−1, and the majority of weak magnetic elements located at the areas where the absolute velocity is greater than 1.00 km s−1; (5) strongly magnetized regions only have weak absolute Doppler velocities. The absolute velocity is lower than 1.00 km s−1 in the regions where the magnetic flux density of elements is higher than 100 G.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proper integration time of polarization signals of internetwork regions using Sunrise/IMaX data

Distribution of magnetic fields in the quiet-Sun internetwork areas has been affected by weak polarization (in particular Stokes Q and U) signals. To improve the signal-to-noise ratio (SNR) of the weak polarization signals, several approaches, including temporal integrations, have been proposed in the literature. In this study, we aim to investigate a proper temporal-integration time with which...

متن کامل

Magnetic field distribution in the quiet Sun: a reduced model approach

Context. The quiet Sun presents magnetized plasma whose field strengths vary from zero to about 2 kG. The probability density function of the magnetic field strength B efficaciously describes the statistical properties of the quiet Sun magnetic field. Aims. We simulate the dynamics and the evolution of quiet Sun magnetic elements to produce a probability density function of the field strengths ...

متن کامل

Magnetic field distribution in the quiet Sun: a simplified model approach

Context. The quiet Sun presents magnetized plasma whose field strengths vary from zero to about 2 kG. The probability density function of the magnetic field strength B efficaciously describes the statistical properties of the quiet Sun magnetic field. Aims. We simulate the dynamics and the evolution of quiet Sun magnetic elements to produce a probability density function of the field strengths ...

متن کامل

The Properties of Horizontal Magnetic Elements in Quiet Solar Intranetwork

Using the data observed by the Solar Optical Telescope/Spectro-Polarimeter aboard the Hinode satellite, the horizontal and vertical fields are derived from the wavelength-integrated measures of Zeeman-induced linear and circular polarizations. The quiet intranetwork regions are pervaded by horizontal magnetic elements. We categorize the horizontal intranetwork magnetic elements into two types: ...

متن کامل

Investigations of Magnetic Properties Through Electrodeposition Current and Controlled Cu Content in Pulse Electrodeposited CoFeCu Nanowires

CoFeCu nanowires were deposited by pulsed electrodeposition technique into the porous alumina templates by a two-step mild anodization technique, using the single-bath method. The electrodeposition was performed in a constant electrolyte while Cu constant was controlled by electrodeposition current. The electrodeposition current was 3.5, 4.25, 5 and 6 mA. The effect of electrodeposition current...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009